欢迎来到高考学习网,

[登录][注册]

免费咨询热线:010-57799777

高考学习网
今日:1530总数:5885151专访:3372会员:401265
当前位置: 高考学习网 > 2015高考真题——数学文(浙江卷)Word版含解析

2015高考真题——数学文(浙江卷)Word版含解析

资料类别: 数学/试题

所属版本: 通用

所属地区: 浙江

上传时间:2015/6/10

下载次数:1059次

资料类型:历年高考题

文档大小:1.04M

所属点数: 0

普通下载 VIP下载 【下载此资源需要登录并付出 0 点,如何获得点?

一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、已知集合,,则( ) A. B. C. D.【答案】A 【解析】试题分析:由题意得,,所以,故选A. 考点:1.一元二次不等式的解法;2.集合的交集运算. 2、某几何体的三视图如图所示(单位:),则该几何体的体积是( ) A. B. C. D.【答案】C 考点:1.三视图;2.空间几何体的体积. 3、设,是实数,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】D 考点:1.充分条件、必要条件;2.不等式的性质. 4、设,是两个不同的平面,,是两条不同的直线,且,( ) A.若,则 B.若,则 C.若,则 D.若,则【答案】A 【解析】试题分析:采用排除法,选项A中,平面与平面垂直的判定,故正确;选项B中,当时,可以垂直,也可以平行,也可以异面;选项C中,时,可以相交;选项D中,时,也可以异面.故选A. 考点:直线、平面的位置关系. 5、函数(且)的图象可能为( ) A. B. C. D.【答案】D 【解析】试题分析:因为,故函数是奇函数,所以排除A, B;取,则,故选D. 考点:1.函数的基本性质;2.函数的图象. 6、有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:)分别为,,,且,三种颜色涂料的粉刷费用(单位:元/)分别为,,,且.在不同的方案中,最低的总费用(单位:元)是( ) A. B. C. D.【答案】B 考点:1.不等式性质;2.不等式比较大小. 7、如图,斜线段与平面所成的角为,为斜足,平面上的动点满足,则点的轨迹是( ) A.直线 B.抛物线 C.椭圆 D.双曲线的一支【答案】C 【解析】试题分析:由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成角的平面截圆锥,所得图形为椭圆.故选C. 考点:1.圆锥曲线的定义;2.线面位置关系. 8、设实数,,满足( ) A.若确定,则唯一确定 B.若确定,则唯一确定 C.若确定,则唯一确定 D.若确定,则唯一确定【答案】B 【解析】试题解析:因为,所以,所以,故当确定时,确定,所以唯一确定.故选B. 考点:函数概念二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9、计算: , .【答案】 考点:对数运算 10、已知是等差数列,公差不为零.若,,成等比数列,且,则 , .【答案】【解析】试题分析:由题可得,,故有,又因为,即,所以. 考点:1.等差数列的定义和通项公式;2.等比中项. 11、函数的最小正周期是 ,最小值是 .【答案】【解析】试题分析:,所以;. 考点:1.三角函数的图象与性质;2.三角恒等变换. 12、已知函数,则 ,的最小值是 .【答案】考点:1.分段函数求值;2.分段函数求最值. 13、已知,是平面单位向量,且.若平面向量满足,则 .【答案】【解析】试题分析:由题可知,不妨,,设,则,,所以,所以. 考点:1.平面向量数量积运算;2.向量的模. 14、已知实数,满足,则的最大值是 .【答案】15 【解析】 试题分析: 由图可知当时,满足的是如图的劣弧,则在点处取得最大值5;当时,满足的是如图的优弧,则与该优弧相切时取得最大值,故,所以,故该目标函数的最大值为. 考点:1.简单的线性规划; 15、椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是 .【答案】考点:1.点关于直线对称;2.椭圆的离心率. 三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 16. (本题满分14分)在中,内角A,B,C所对的边分别为.已知. (1)求的值;(2)若,求的面积. 【答案】(1);(2) 考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式. 17. (本题满分15分)已知数列和满足, . (1)求与; (2)记数列的前n项和为,求. 【答案】(1);(2) 【解析】试题分析:(1)根据数列递推关系式,确定数列的特点,得到数列的通项公式;(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和. 考点:1.等差等比数列的通项公式;2.数列的递推关系式;3.错位相减法求和. 18. (本题满分15分)如图,在三棱锥中,在底面ABC的射影为BC的中点,D为的中点. (1)证明: ; (2)求直线和平面所成的角的正弦值. 【答案】(1)略;(2) (2)作,垂足为F,连结BF. 因为平面,所以. 因为,所以平面. 所以平面. 所以为直线与平面所成角的平面角. 由,得. 由平面,得. 由,得. 所以考点:1.空间直线、平面垂直关系的证明;2.直线与平面所成的角. 19. (本题满分15分)如图,已知抛物线,圆,过点作不过原点O的直线PA,PB分别与抛物线和圆相切,A,B为切点. (1)求点A,B的坐标; (2)求的面积. 注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点. 【答案】(1);(2) 因为直线PA与抛物线相切,所以,解得. 所以,即点. 设圆的圆心为,点的坐标为,由题意知,点B,O关于直线PD对称,故有,解得.即点. (2)由(1)知,,直线AP的方程为,所以点B到直线PA的距离为. 所以的面积为. 考点:1.抛物线的几何性质;2.直线与圆的位置关系;3.直线与抛物线的位置关系. 20. (本题满分15分)设函数. (1)当时,求函数在上的最小值的表达式; (2)已知函数在上存在零点,,求b的取值范围. 【答案】(1);(2) 考点:1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想. 高考学习网-中国最大高考学习网站Gkxx.com | 我们负责传递知识!

本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请联系并提供证据(kefu@gkxx.com),三个工作日内删除。

热门下载

精品专题more

友情链接:初中学习网人民网高考网易高考高中作文网新东方冬令营