欢迎来到高考学习网,

[登录][注册]

免费咨询热线:010-57799777

高考学习网
今日:1530总数:5885151专访:3372会员:401265
当前位置: 高考学习网 > 2016年高考四川卷理数试题(含答案)

2016年高考四川卷理数试题(含答案)

资料类别: 数学/试题

所属版本: 通用

所属地区: 四川

上传时间:2016/6/15

下载次数:980次

资料类型:历年高考题

文档大小:1.95M

所属点数: 0

普通下载 VIP下载 【下载此资源需要登录并付出 0 点,如何获得点?
2016年普通高等学校招生全国统一考试(四川卷)
数学(理工类)
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一个是符合题目要求的。
1.设,Z为整数集,则中元素的个数是
(A(B)(C)(D)
2.设i为虚数单位则的展开式中含x
(A)x4(B)x4(C) x4(D) x4
3.为了得到函数的图象只需把函数的图象上所有的点
(A)平行移动个单位长度(B平行移动个单位长度
(C)平行移动个单位长度(D)平行移动个单位长度

(A)(B)(C)(D)
5.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是
(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)
( A)2018年(B)2019年(C)2020年(D)2021年
6.秦九韶是我国南宋使其的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为

(A)9  (B)18  (C)20  (D)35
7.设p:实数x,y满足(x–1)2–(y–1)2≤2,q:实数x,y满足则p是q的
(A)必要不充分条件(B)充分不必要条件(C)充要条件(D)既不充分也不必要条件
8.设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为
(A)(B)(C)(D)1
9.设直线l1,l2分别是函数f(x)=图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是
(A)(0,1)  (B)(0,2)  (C)(0,+∞)  (D)(1,+∞)
10.在平面内,定点A,B,C,D满足==,﹒=﹒=﹒=-2,动点P,M满足=1,=,则的最大值是
(A)(B)(C)(D)
二、填空题:本大题共5小题,每小题5分,共25分。
11.cos2–sin2=.
12.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面上时,就说这次试验成功,则在2次试验中成功次数X的均值是.


14.已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=,则f()+ f(1)=。15.在平面直角坐标系中,当P(x,y)不P的“伴随点”为;
P是原点时,P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点的“伴随点”是点,则点的
②单位圆的“伴随曲线”是它自身;
③若关于
④一条直线的
其中的真命题是
三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。
16.(本小题满分12分)
我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(I)求直方图中a的值;
(II)
(III)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

17.(本小题满分12分)
在△ABC中,角A,B,C所对的边分别是a,b,c,且.
(I)证明:;
(II),求.
18.(本小题满分12分)
如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为边AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

19.(本小题满分12分)
已知数列{}的首项为1,为数列}的前n项和,,其中q.
(I)若成等差数列求an的通项公式
(ii)设双曲线的离心率为且证明.

20.(本小题满分13分)
已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的
(I)求椭圆E的方程及点T的坐标;
(II)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得∣PT∣2=λ∣PA∣·∣PB∣,并求λ的值.
21.(本小题满分14分)
设函数f(x)=ax2-a-lnx,其中a ∈R.
(I)讨论f(x)的单调性
(II)确定a的所有可能取值,使得f(x)>-e1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。











2016年普通高等学校招生全国统一考试(四川卷)
数学(理工类)试题参考答案

1.C  2.A  3.D  4.D  5.B
6.B  7.A  8.C  9.A  10.B

11.  12.  13.  14.–2  15.
三、解答题
16.(本小题满分12分)
(Ⅰ)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04,
同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.
由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,
解得a=0.30.
(Ⅱ)由(Ⅰ),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.
由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为
300 000×0.12=36 000.
(Ⅲ)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,
而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,
所以2.5≤x<3.
由0.3×(x–2.5)=0.85–0.73,
解得x=2.9.
所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.
17.(本小题满分12分)
(Ⅰ)根据正弦定理,可设===k(k>0).
则a=ksin A,b=ksin B,c=ksin C.
代入+=中,有
+=,变形可得
sin Asin B=sin Acos B+cos Asin B=sin(A+B).
在△ABC中,由A+B+C=π,有sin(A+B)=sin(π–C)=sin C,
所以sin Asin B=sin C.
(Ⅱ)由已知,b2+c2–a2=bc,根据余弦定理,有
cos A==.
所以sin A==.
由(Ⅰ),sin Asin B=sin Acos B+cos Asin B,
所以sin B=cos B+sin B,
故tan B==4.

18. (本小题满分12分)
()在梯形ABCD中,AB与CD不平行.
延长AB,DC,相交于点M(M平面PAB),点M即为所求的一个点.理由如下:
由已知,BCED,且BC=ED.
所以四边形BCDE是平行四边形. 
从而CMEB.
又EB平面PBE,CM平面PBE,
所以CM平面PBE.
(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)

由已知,CD⊥PA,CD⊥AD,PAAD=A,
所以CD⊥平面PAD.
从而CD⊥PD.
所以PDA是二面角P-CD-A的平面角.
所以PDA=45°.
设BC=1,则在Rt△PAD中,PA=AD=2.
过点A作AH⊥CE,交CE的延长线于点H,连接PH.
易知PA⊥平面ABCD,
从而PA⊥CE.
于是CE⊥平面PAH.
所以平面PCE⊥平面PAH.
过A作AQ⊥PH于Q,则AQ⊥平面PCE.
所以APH是PA与平面PCE所成的角.
在Rt△AEH中,AEH=45°,AE=1,
所以AH=.
在Rt△PAH中,PH== ,
所以sinAPH= =.
方法二:
由已知,CD⊥PA,CD⊥AD,PAAD=A,
所以CD⊥平面PAD.
于是CD⊥PD.
从而PDA是二面角P-CD-A的平面角. 
所以PDA=45°.
由PA⊥AB,可得PA⊥平面ABCD.
设BC=1,则在Rt△PAD中,PA=AD=2.
作Ay⊥AD,以A为原点,以 ,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),
所以=(1,0,-2),=(1,1,0),=(0,0,2)
设平面PCE的法向量为n=(x,y,z),
由 得 设x=2,解得n=(2,-2,1).
设直线PA与平面PCE所成角为α,则sinα= = .
所以直线PA与平面PCE所成角的正弦值为 .

19.(本小题满分12分)
()由已知, 两式相减得到.
又由得到,故对所有都成立.
所以,数列是首项为1,公比为q的等比数列.
从而.
由成等比数列,可得,即,则,
由已知,,故 .
所以.
()由()可知,.
所以双曲线的离心率   .
由解得.
因为,所以.
于是,
故.

(I)由已知,,则椭圆E的方程为
有方程组 得①
方程①的判别式为由得
此方程①的解为
所以椭圆E的方程为.
点T坐标为(2,1).
(II)由已知可设直线 的方程为,
有方程组 可得
 ),.
设点A,B的坐标分别为 .
由方程组 可得②
方程②的判别式为由得
由②得
所以 ,
同理,
所以


.
故存在常数.

21.(本小题满分14分)
(I) 
 <0,在单调递减
由.
此时,当时<0,单调递减
当时>0,单调递
(II)令=,=.
则=.
而当时>0,
所以在区间内单调递增
又由=0,有>0,
从而当时>0.
当时=.
故当>在区间内恒成立时必有
当时,>1.
由(I)有,从而,
所以此时>在区间内不恒成立
当时,令,
当时,,
因此,在区间单调递增.
又因为,所以当时, ,即 恒成立.
综上,















高考学习网-中国最大高考学习网站Gkxx.com | 我们负责传递知识!


































本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请联系并提供证据(kefu@gkxx.com),三个工作日内删除。

热门下载

精品专题more

友情链接:初中学习网人民网高考网易高考高中作文网新东方冬令营