欢迎来到高考学习网,

[登录][注册]

免费咨询热线:010-57799777

高考学习网
今日:1530总数:5885151专访:3372会员:401265
当前位置: 高考学习网 > 2017年高考江苏卷数学试题(Word版含答案)

2017年高考江苏卷数学试题(Word版含答案)

资料类别: 数学/试题

所属版本: 通用

所属地区: 江苏

上传时间:2017/6/13

下载次数:279次

资料类型:历年高考题

文档大小:1.24M

所属点数: 0

普通下载 VIP下载 【下载此资源需要登录并付出 0 点,如何获得点?
绝密★启用前
2017年普通高等学校招生全国统一考试(江苏卷)
数学I
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求
1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上
1.已知集合,,若则实数a的值为________
2.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是__________
3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取         件.
4.右图是一个算法流程图,若输入x的值为,则输出的y的值是            .

5.若tan,则tan=          .
6.如图,在圆柱O1 O2 内有一个球O,该球与圆柱的上、下底面及母线均相切。记圆柱O1 O2 的体积为V1 ,球O的体积为V2 ,则 的值是     

7.记函数 的定义域为D.在区间[-4,5]上随机取一个数x,则x D的概率是     
8.在平面直角坐标系xoy 中 ,双曲线 的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1 , F2 ,则四边形F1 P F2 Q的面积是       
9.等比数列的各项均为实数,其前n项的和为Sn,已知,
则=      
10.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费之和最小,则x的值是      
11.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是         。
12.如图,在同一个平面内,向量,,,的模分别为1,1,,与的夹角为,且tan=7,与的夹角为45°。若=m+n(m,nR),则m+n=         

13.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若·20,则点P的横坐标的取值范围是         
14.设f(x)是定义在R 且周期为1的函数,在区间上,其中集合D=,则方程f(x)-lgx=0的解的个数是           .
15.(本小题满分14分)
如图,在三棱锥A-BCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EFAD.
求证:(1)EF平面ABC;
(2)ADAC.

16. (本小题满分14分)
已知向量a=(cosx,sinx),,.
(1)若ab,求x的值;
(2)记,求的最大值和最小值以及对应的x的值
17.(本小题满WWW.ziyuanku.com分14分)
如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.
(1)求椭圆E的标准方程;
(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.


如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

19.(本小题满分6分)
对于给定的正整数,若数列anl 满足
=2kan对任意正整数(n> k) 总成立,则称数列anl 是“P(k)数列
(1)证明:等差数列lanl是“P(3)数列”;
若数列anl既是“P(2)数列”,又是“P(3)数列”,证明:anl是等差数列
20.(本小题满分16分)
已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)
求b关于a的函数关系式,并写出定义域;
证明:b²>3a;
若, 这两个函数的所有极值之和不小于,求a的取值范围。


2017年普通高等学校招生全国统一考试(江苏卷)
数学II(附加题)
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求$来&源:ziyuanku.com
1. 本试卷共2页,均为非选择题(第21题 ~ 第23题)。本卷满分为40分,考试时间为30分钟。考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。 
21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答。若多做,则按作答的前两小题评分。解答时应写出文字说明、证明过程或演算步骤。
A.【选修4-1:几何证明选讲】(本小题满分10分)
如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足。

求证:(1)∠PAC=∠CAB;
(2)AC2 =AP·AB。
B.[选修4-2:矩阵与变换](本小题满分10分)
已知矩阵A= ,B=.
求AB;
若曲线C1; 在矩阵AB对应的变换作用下得到另一曲线C2 ,求C2的方程.
C.[选修4-4:坐标系与参数方程](本小题满分10分)
在平面坐标系中xOy中,已知直线l的参考方程为(t为参数),曲线C的参数方程为(s为参数)。设p为曲线C上的动点,求点P到直线l的距离的最小值
D.[选修4-5:不等式选讲](本小题满分10分)
已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd8.
 
22.(本小题满分10分)
如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120º.
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值。
  
23. (本小题满分10)
已知一个口袋有m个白球,n个黑球(m,n  ,n 2),这些球除颜色外全部相同。现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,……,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2,3,……,m+n).

(1)试求编号为2的抽屉内放的是黑球的概率p;
(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x的数学期望,证明 中·华.资*源%库 ziyuanku.com



2017年高考江苏卷数学试题(答案)
一 、填空题: 本题考查基础知识、 基本运算和基本思想方法. 每小题5 分, 共计70 分. 
1. 12.			3.18				4.		5.
6.				7.				8.  			9. 32 		10.30
11.  		12.3				13. 	14. 8 
二 、 解答题
15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力 和推理论证能力.满分14 分.
证明:(1)在平面内,因为ABAD,,.
又因为平面ABC,平面ABC,EF∥平面ABC.(2)平面ABD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.平面,.
又AB⊥AD,,平面ABC,平面ABCAD⊥平面ABC,又因为AC平面ABC,AD⊥AC.
16.本小题主要考查向量共线、数量积的概念及运算, 考查同角三角函数关系、诱导公式、两角 和(差)的三角函数、三角函数的图像与性质, 考查运算求解能力.满分14 分.
解:因为,a∥b, 所以.若则与矛盾故.于是. 又,所以(2).,,.
于是,当,即时,取最大值3;当,即时,取最小值.
17.本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.满分14 分. 解,两准线之间的距离为8,所以,, 
解得,于是, 
因此椭圆E的标准方程是.
(2)由,.
设,因为点.
当时与相交于时直线,直线.
因为,,所以直线的斜率为直线的斜率为的方程, ①
直线的方程. ②
由①②,解得,所以点在椭圆上,,即或在椭圆E上,故.
由,解得,无解点P的坐标.
18.本小题主要考查正棱柱、正棱台的概念, 考查正弦定理、余弦定理等基础知识, 考查空间 想象能力和运用数学模型及数学知识分析和解决实际问题的能力.满分16 分. 
解:(1)由正棱柱的定义,平面,所以平面,.
记玻璃棒的另一端落在处.
因为,
所以,从而	,
记与水面的焦点为,过作.
答:玻璃棒l没入水中部分的长度为16cm.
( 如果将“没入水中部分冶理解为“水面以上部分冶,则结果为24cm)
				
(2)如图,O,O1是正棱台的两底面中心.
由正棱台的定义,OO1⊥平面 EFGH, 所以平面E1EGG1⊥平面EFGH,O1O⊥EG.中/华-资*源%库
同理,平面 E1EGG1⊥平面E1F1G1H1,O1O⊥E1G1.
记玻璃棒的另一端落在GG1上点N处. 
过G作GK⊥E1G,K为垂足, 则GK =OO1=32. 
因为EG = 14,E1G1= 62,
所以KG1= ,从而. 
设则.
因为,所以.
在中,由正弦定理可得,解得. 
因为,所以.
于是.
记EN与水面的交点为P2,过 P2作P2Q2⊥EG,Q2为垂足,则 P2Q2⊥平面 EFGH,故P2Q2=12,从而 EP2=.
答:玻璃棒l没入水中部分的长度为20cm.
(如果将“没入水中部分冶理解为“水面以上部分冶,则结果为20cm)
19.本小题主要考查等差数列的定义、通项公式等基础知识, 考查代数推理、转化与化归及综 合运用数学知识探究与解决问题的能力.满分16 分.
证明:(1)因为是等差数列,其公差为,则当时,,
所以,
因此等差数列是数列()数列数列数列时,,①
当时,.②
由①知,,③中/华-资*源%库
,④
将③④代入②,得,其中是等差数列设其公差为,则,所以,则,所以是等差数列20.本小题主要考查利用导数研究初等函数的单调性、极值及零点问题, 考查综合运用数学思 想方法分析与解决问题以及逻辑推理能力.满分16 分.
解(1)由,得.
当时,有极小值.
因为的极值点是的零点.
所以,又,故.
因为有极值,故有实根,从而,即.
时,,故在R上是增函数,没有极值;
时,有两个相异的实根,.
列表如下
x								+	0	–	0	+				极大值		极小值			故的极值点是.
从而,
因此,定义域为.
(2)由(1)知,.
设,则.
当时,,从而在上单调递增.
因为,所以,故,即.
因此.
(3)由(1)知,的极值点是,且,.
从而


记,所有极值之和为,
因为的极值为,所以,.
因为,于是在上单调递.
因为,于是,故.
因此a的取值范围为.
21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答若多做,则按作答的前两小题评分解答时应写出文字说明、证明过程或演算步骤
A.[选修4-1:几何证明选讲
证明:(1)因为半圆O点,所以,为半圆O,
因为AP⊥PC,所以,
所以.
(2)由(1),,所以.
B. 选修4-:
解(1)因为A==,
所以AB==.
(2)设曲线上的任意一点,AB对应的变换下,
则,即,.
因为在曲线上,所以,即因此曲线矩阵AB对应的变换下.
C. [选修4-: 
本小题主要考查曲线的参数方程及互化等基础知识, 考查运算求解能力.满分10 分.
解直线的普通方程为在曲线上,设,
点到直线的的距离,
当时,.的坐标为时曲Ziyuanku.com线到直线的距离.
D. [选修4-:选讲 
本小题主要考查不等式的证明, 考查推理论证能力.满分10分.
证明:由柯西不等式可得,
所以,
因此.
22. 【必做题】本小题主要考查空间向量、异面直线所成角和二面角等基础知识, 考查运用空间向量解决问题的能力.满分10 分.
解:在平面ABCD内,过点A作AEAD,交BC于点E.
因为AA1平面ABCD,
所以AA1AE,AA1AD.
如图,以为正交基底,建立空间直角坐标系A-xyz.
因为AB=AD=2,AA1=,.
则.
(1) ,
则.
因此异面直线A1B与AC1所成角的余弦值为.

(2)平面A1DA的一个法向量为.
设为平面BA1D的一个法向量,
又,
则即
不妨取x=3,则,
所以为平面BA1D的一个法向量,
从而,
设二面角B-A1D-A的大小为,则.
因为,所以.
因此二面角B-A1D-A的正弦值为.
23.【必做题】本小题主要考查古典概率、随机变量及其分布、数学期望等基础知识, 考查组合数及其性质, 考查运算求解能力和推理论证能力.满分10分. 
解:(1) 编号为2的抽屉内放的是黑球的概率为: . 
(2) 随机变量 X 的概率分布为: 
X				…		…			P				…		…			随机变量 X 的期望为:
.
所以





.












高考学习网-中国最大高考学习网站Gkxx.com | 我们负责传递知识!



本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请联系并提供证据(kefu@gkxx.com),三个工作日内删除。

精品专题more

友情链接:初中学习网人民网高考网易高考高中作文网新东方冬令营